Aqueous Biphasic Systems of Pyrrolidinium Ionic Liquids with Organic Acid-Derived Anions and K3PO4

Karen G. João, Liliana C. Tomé, Andreia S.L. Gouveia, Isabel M. Marrucho

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Aqueous biphasic systems based on ionic liquids (ILs) have been researched as promising extraction and purification routes for a huge diversity of compounds. The inherent tunability offered by ILs combined with the large variety of salts available underlines the reliable phase equilibrium data. In this vein, this work presents novel aqueous biphasic systems based on the 1-butyl-1-methylpyrrolidinium cation combined with anions derived from organic acids, such as acetate, trifluoroacetate, hexanoate, adipate, and one halogenated anion, bromide, in the presence of a powerful salting out species, the inorganic salt K3PO4. The capacity of these ILs to undergo phase separation is discussed in regard to the chemical structure of the IL anion. The results here obtained were compared with those determined for poly(ionic liquid) analogues, and it was observed that while in ILs the hydrophobicity of the anion has the major role in phase splitting, in poly(ionic liquid)s that role is played by the polymer molecular weight. The effect of temperature on the phase equilibria is addressed.

Original languageEnglish
Pages (from-to)1182-1188
Number of pages7
JournalJournal of Chemical and Engineering Data
Volume62
Issue number4
DOIs
Publication statusPublished - 13 Apr 2017

Fingerprint Dive into the research topics of 'Aqueous Biphasic Systems of Pyrrolidinium Ionic Liquids with Organic Acid-Derived Anions and K<sub>3</sub>PO<sub>4</sub>'. Together they form a unique fingerprint.

Cite this