Biosensors and rapid diagnostic tests on the frontier between analytical and clinical chemistry for biomolecular diagnosis of dengue disease: a review.

Research output: Contribution to journalBook/Film/Article reviewpeer-review

69 Citations (Scopus)

Abstract

The past decades have witnessed enormous technological improvements towards the development of simple, cost-effective and accurate rapid diagnostic tests for detection and identification of infectious pathogens. Among them is dengue virus, the etiologic agent of the mosquito-borne dengue disease, one of the most important emerging infectious pathologies of nowadays. Dengue fever may cause potentially deadly hemorrhagic symptoms and is endemic in the tropical and sub-tropical world, being also a serious threat to temperate countries in the developed world. Effective diagnostics for dengue should be able to discriminate among the four antigenically related dengue serotypes and fulfill the requirements for successful decentralized (point-of-care) testing in the harsh environmental conditions found in most tropical regions. The accurate identification of circulating serotypes is crucial for the successful implementation of vector control programs based on reliable epidemiological predictions. This paper briefly summarizes the limitations of the main conventional techniques for biomolecular diagnosis of dengue disease and critically reviews some of the most relevant biosensors and rapid diagnostic tests developed, implemented and reported so far for point-of-care testing of dengue infections. The invaluable contributions of microfluidics and nanotechnology encompass the whole paper, while evaluation concerns of rapid diagnostic tests and foreseen technological improvements in this field are also overviewed for the diagnosis of dengue and other infectious and tropical diseases as well.
Original languageUnknown
Pages (from-to)28-42
JournalAnalytica Chimica Acta
Volume687
Issue number1
DOIs
Publication statusPublished - 1 Jan 2011

Cite this