Epitope Mapping by NMR of a Novel Anti-Aβ Antibody (STAB-MAb)

Research output: Contribution to journalArticlepeer-review

8 Downloads (Pure)

Abstract

Alzheimer´s Disease (AD) is one of the most common neurodegenerative disorders worldwide. Excess of β-amyloid (Aβ), a peptide with a high propensity to misfold and self-aggregate, is believed to be the major contributor to the observed neuronal degeneration and cognitive decline in AD. Here, we characterize the epitope of a novel anti-Aβ monoclonal antibody, the STAB-MAb, which has previously demonstrated picomolar affinities for both monomers (KD = 80 pM) and fibrils (KD = 130 pM) of Aβ(1–42) and has shown therapeutic efficacy in preclinical mouse models of AD. Our findings reveal a widespread epitope that embraces several key Aβ residues that have been previously described as important in the Aβ fibrillation process. Of note, STAB-MAb exhibits a stronger affinity for the N-terminus of Aβ and stabilizes an α-helix conformation in the central to N-terminal region of the peptide, in addition to disrupting a characteristic salt-bridge of a hairpin structure present in fibrils. The NMR derived epitope supports the observed results from ThT-monitored fluorescence and electron microscopy experiments, in which STAB-MAb was shown to inhibit the formation of aggregates and promote disruption of pre-formed fibrils. In combination with the published in vitro and in vivo assays, our study highlights STAB-MAb as a rare and versatile antibody with analytical, diagnostic and therapeutic efficacy.

Original languageEnglish
Article number12241
JournalScientific Reports
Volume9
Issue number1
DOIs
Publication statusPublished - 1 Dec 2019

Fingerprint Dive into the research topics of 'Epitope Mapping by NMR of a Novel Anti-Aβ Antibody (STAB-MAb)'. Together they form a unique fingerprint.

Cite this