Simulation of the velocity field in compound channel flow using different closure models

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


In this study a comparison of three turbulence closure models (two isotropic and one anisotropic) with experimental data is performed. The interaction between the main channel (MC) flow and the floodplain (FP) generates a complex flow structure. A shallow mixing layer develops between the MC flow and the slower FP flow generating a high horizontal shear layer, streamwise and vertical vortices, momentum transfer and other phenomena, related to velocity retardation and acceleration. This phenomenon dissipates part of the kinetic energy and contributes to the reduction of the velocity differences between the MC and the FP. The large scale vortices that are generated in the shear layer are anisotropic, provoking the formation of secondary flow cells that influence the primary velocity distribution. These three-dimensional turbulent structures can be reasonable well reproduced by a simple anisotropic model (Algebraic Stress Model). The isotropic models are capable of simulating the boundary layer, especially the model base in k-ω equations, but cannot simulate the shear layer that develops at the interface.
Original languageUnknown
Title of host publicationEuropean IAHR Congress
Publication statusPublished - 1 Jan 2010
Event1st European IAHR Congress -
Duration: 1 Jan 2010 → …


Conference1st European IAHR Congress
Period1/01/10 → …

Cite this