TY - JOUR
T1 - The Brown–Halmos theorem for a pair of abstract Hardy spaces
AU - Karlovich, Alexei
AU - Shargorodsky, Eugene
N1 - info:eu-repo/grantAgreement/FCT/5876/147204/PT#
sem pdf conforme despacho.
PY - 2018
Y1 - 2018
N2 - Let H[X] and H[Y] be abstract Hardy spaces built upon Banach function spaces X and Y over the unit circle T. We prove an analogue of the Brown–Halmos theorem for Toeplitz operators Ta acting from H[X] to H[Y] under the only assumption that the space X is separable and the Riesz projection P is bounded on the space Y. We specify our results to the case of variable Lebesgue spaces X=Lp(⋅) and Y=Lq(⋅) and to the case of Lorentz spaces X=Y=Lp,q(w), 1p(T).
AB - Let H[X] and H[Y] be abstract Hardy spaces built upon Banach function spaces X and Y over the unit circle T. We prove an analogue of the Brown–Halmos theorem for Toeplitz operators Ta acting from H[X] to H[Y] under the only assumption that the space X is separable and the Riesz projection P is bounded on the space Y. We specify our results to the case of variable Lebesgue spaces X=Lp(⋅) and Y=Lq(⋅) and to the case of Lorentz spaces X=Y=Lp,q(w), 1p(T).
KW - Banach function space
KW - Brown–Halmos theorem
KW - Pointwise multiplier
KW - Toeplitz operator
KW - Variable Lebesgue space
KW - Weighted Lorentz space
UR - http://www.scopus.com/inward/record.url?scp=85056634900&partnerID=8YFLogxK
U2 - 10.1016/j.jmaa.2018.11.022
DO - 10.1016/j.jmaa.2018.11.022
M3 - Article
AN - SCOPUS:85056634900
JO - Journal of Mathematical Analysis and Applications
JF - Journal of Mathematical Analysis and Applications
SN - 0022-247X
ER -